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INTRODUCTION

The diffraction model allows for a consistent treatment of diverse scat-

tering phenomena. For example, when electron-phonon interaction is the scat-

tering mechanism, the diffraction model provides a unified treatment of

electrical and thermal ransport; phonon contributions to the electron effective

mass; and acoustic attenuation in perfect and point- or line-defected

crystalline alloys, and also in liquid, amorphous, and disordered alloys.

The essence of diffraction model methods is the factorization of scattering

rate matrix elements into terms such that the lattice vibrational properties are

entirely contained in dynamical structure factors, which can be related to

transforms of generalized pair distribution functions.

The most celebrated dynamical structure factor is that defined by Van

Hove (ref 1), viz.,

S(K,g) = f dt exo(iat) < r(K,t)r+(K,O) >1 (1)

where <O>T denotes thermal average in the equilibrium ensemble (i.e., <O>T =

E Pi <iJ 0 i>), and r(K,t) is the spatial Fourier transform of the ion density

operator. The Van Hove dynamical structure factor S(K,Q) describes very general

scattering phenomena in which the lattice absorbs pseudo-momentum K and energy

9. It is directly measurable via neutron scattering experiments. It encom-

passes Debye-Waller factors, umklapp processes, couplings to transverse phonons,

multiphonon effects, etc. Thus, S(K,,Q) has been the object of intense theoreti-

cal interest.

Baym (ref 2) elaborated a diffraction model approach to the treatment of

electron-phonon interaction controlled phenomena based upon the Van Hove dynami-

cal structure factor. Baym's approach has proven to be extremely productive and

has become standard. However, Baym's form of the diffraction model, based on
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the Van Hove dynamical structure factor, is strictly correct only for the scat-

tering of plane (or pseudoplane) waves (PWs). To apply diffraction model tech-

niques to eiectron-phonon interaction controlled processes in general, it is

necessary to derive diffraction model expressions appropriate for treating the

scatterina of Bloch waves (BWs).

Therefore, the principal objective of this report is to present a

coherent exposition of a generalized diffraction model which applies to PWs or

BWs in perfect, disordered, or defected crystalline alloys and to PWs in liquid

or amorphous alloys. This aim is realized through the introduction of a gener-

alized diffraction model which applies to BW electron-phonon interaction

controlled processes and reduces to the standard diffraction model 4n PW scat-

tering cases.

An important secondary objective is to reveal the diffraction model origins

of the approximate expressions appearing in the standard literature. In par-

ticular, the standard equations used zo describe electron-phonon interaction

controlled processes are approximate diffraction model expressions.

THE GENERALIZED DIFFRACTION MODEL

The development of diffraction model factorizations for scattering of BWs

is demonstrated in this section. The essential diffraction model ideas are con-

tained in Reference 1. The theoretical development follows that presented in

Reference 3. The methods employed here were also used by Van Hove (ref 1). The

crucial step in either reference is the application of Bloch's Theorem (ref 4).

In order to streamline the notation: (1) Let q stand for (q,j) where q is a

phonon wave vector and . is a phonon branch and polarization index. (2) Let k

stand for (k,s) where k is the scattered particle wave vector and s is an
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appropriate index. For example, for electron states, s might represent the

spin. (3) Consider pure materials. (The generalization required to treat

alloys, via the introduction o4 partial structure factors, is straightforward

and well known.) (4) The following shorthand notations are adopted:

K = k - k', A = K & G - H, and A' = K + G' - H'

where G, H, G', and H' are reciprocal lattice vectors (RLVs).

Scattering from an initial state containing a BW of wave number index k,

k,i> a(G) exp[i(k+G).x] Ii> (2a)

G

inzo a final state containing a 8W of wave number index k',

k',f>= 2 A(G) exp~i(k'+G).x] I (2b)

G

is treated. The sums are on RLV G.

The perturbation H' producing the scattering is assumed to be of the form

H'= [V(x-xl) - U(x-1)] (3)

where xI is the position of the ion, which, in the absence of the lattice vibra-

tion, would be at position 1, V(x) is the ionic potential, and U(x) is the

unperturbed potential. We think of these potentials as fully screened, etc.,

and use the same letters to denote the Fourier transforms,

{U(A),V(A)I = f dx exp(iA.x]{U(x),V(x) (4a)

The origin is chosen in such a way that

A.1 = K.1 + (integer)27r

We also denote the difference in the transformed potentials (i.e., the transform

of the undisplaced potentials) by
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W(A) = V(A) - U(A) (4b)

Thus, using Eqs. (2) to (4),

<k',fj H'jk,i> A (G)*a(H){V(A)<fI exp[iA.xflli> -U(A)expiK.1]<fj 1>) (5)

1 ,G,H

and

<k',fI H'j k,i>exp~i(ei-ef)] = (G)*cz(H)jV(A),<fi exp~iA-xl(tflj i>

1 ,G,H

-U(A)exp(iK.1]fI i>} (6a)

where xl(t) is in Heisenberg representation and we have used

HJ i> = Eji> (6b)

and

HJ f> = cfi f> (6c)

It then follows that the scattering rate, neglecting factors accounting for

occupation of the states k, W', etc., is given by

X(k,k',S7) = p-i I <k',fI H'I kJi>I 2 a i-f
i'f

271

- 05(G)*a(H)Et3(G')*ca(H')]*

G,H,G' ,H'

(V(A)V(A')*S'(A,A'.Sl) + W(A)W(A')*a(K)6(Q)) (7)

where the geometrical structure factor a(K) is defined in the usual way, i.e.,

a(K) = expiK.(l--l')] = N exp~iK.d](8

l~l~ d
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The dynamical structure factor S'(A,A',l) is defined as

S'(A,A',Q) = S(A,A',a) - a(K)6(Q) (9a)

where the dynamical structure factor S(A,A',Q) is defined as

S(A,A',2) = exp[iK.(1-1')]

1,1?

j Rexp[-igt] <exp[-iA'.Ul'(O)]exp[iA.Ul(t)]>T  (9b)

and ul(t) is the displacement of the ion at 1 due to the lattice vibrations,

i.e., Xl(t) = 1 + ul(t). Note that Eq. (7) allows for arbitrary combinations of

disorder and defect scattering; for example, Eq. (7) allows for straightforward

application to scattering in impure and/or point defect containing crystalline

solids at finite temperature.

S(A,A',Q) is a generalization of the Van Hove dynamical structure factor

(ref 1), i.e.,

S(K,K,f2) = S(K,Q) (9c)

ard S'(A,A',Q) is a generalization of the modified Van Hove dynamical structure

factor, defined by Baym (ref 2), i.e.,

S'(K,K,il) = S'(K,Q) (9d)

Generalizing the development in Reference 3, one obtains

<exp[-iA'.ul'(O)]exp[iA.ul(t)]>T = exp[A'.Z(l--l',t).A] (10a)

where

Z(d,t) = - w wq (<2nq+l>-<nq+l>exp(iOd,t]-<nq>exp(-iOd,t]) (1Ob)

q

where

Wq = eqeq/2NMgq (10c)
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and d = 1-I' is an ion spacing in the absence of thermal vibrations; N is the

number of ions; M the ion mass; Qq, nq, and eq are the phonon frequency, number

density, and polarization vector at q, respectively, and

Od,t = q.d + Qqt (lOd)

Note that Z(d,t) is a symmetric second rank tensor which is independent of K, A,

and A'.

Thus, we can express the dynamical structure factor S(A,A',Q) in the form

S(A,A',Q) = N exp[iK.d] f exp[-it]exp[A.Z(d,t).A'] (11a)

d

[A...A]...In(K,S1).. .[A'.. .A']/n! (11b)

n=O

where [A.. .A] is an n-fold open product of the vector A. Equation (11b)

defines the structure tensor In(K,Q) of rank 2n and is obtained by expanding the

exponential in Eq. (Ila) and performing the sum over d and the t integration.

(N.B., the tensor In(K,Ql) is not uniquely defined by Eq. (1lb); however, the

most symmetric forms with respect to the left and right inner products are the

obvious choice and are intended.)

Combining Eqs. (7) and (11),

X(k,k', = (G)*a(H)[A(G')*a(H')]*

G,H,G',H'

(V(A)V(A')*S'(A,A',Q) + W(A)W(A')*a(k)6(S1))

: Vn(k,k')*.. .In(K,!a).. .Vn(k,k')/n! + IWo(k,k') 2 Io(K,Q) (12)

n=l
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where we have defined the scalar

Wo(k,k') = <k'IW(x) k> (13a)

and for n=1 to x,, the rank n tensor

Vn(k,k') = <k'I ([(iV).. .(iV)]V(x))I k> (13b)

and we have used the relation

5(G)*a(H) (A...A]V(A) : [ dx( 5(H)exp[i(k' H).x×)*

G,H H

:(-V)., .(1V)]V(x)}{ 5(G)exp[i(k'+G).x]}

:<k'! (r(i7).. .(iV)]V(x)) !k> = Vn(K) (13c)

All the dynamical properties of the lattice are contained in the structure ten-

sors (!n(K,S2) ! n=O, )o).

Equation (12), with (In(K,Q) Jn=O, -) defined in Eqs. (10) and (11),

Wo(k,k') defined in Eq. (13a), and the (Vn(k,k') jn=l,}o) defined in Eq. (13b),

constitute the generalized diffraction model expression and are the principal

results of this report. N.B., to obtain actual scattering rates, one must

include appropriate factors (e.g., (2i/h)f(k)[1-f(k')]) in Eq. (12).

PLANE WAVE SCATTERING, n-PHONON STRUCTURE TENSOR On(K,R), DEBYE-WALLER

TENSOR W, AND THE VAN HOVE DYNAMICAL STRUCTURE FACTOR S(KQ)

Since the f-rst term in Ea. (lOb) is independent of d and t, it is useful

to define the tensor

Z'(d,tk) : Wq [<nq+l>exp(ied,t)+<na>exp(-ied,t) ]  (14a)

q

and

Z / wq <2nq+l> (14b)

q

7



Thus, Eq. (10b) can be rewritten in the form

Z(d,t) = - W + Z'(d,t) (14c)

and since the Debye-Waller exponent 2W(K) is simply related to W, viz.,

2W(K) = K.W.K (14d)

ete designate W as the (second rank) Debye-Waller tensor.

Equations (14a) througyh (14d) suggest that a different factorization of the

scattering rate will be particularly appropriate in the PW case. The treatment

of PW scatterin~g leads in a natural way to the introduction of n-phonon struc-

ture tensors ((Pn(KS2)}, which are also useful in expressing limiting BW

expressions. Thus, Eq. (2a) becomes

I k,i> = exp(ik.x] I i> (15a)

etc., anid

AA -- > K (15b)

Thus, recalling Eq. (9), Eq. (11) yields

S(KJI) N exp(iK.d] J ! exp[-iS~tlexp(K.Z(d,t).K] (16a)

d

- K... K]... .In(KQ)....[K.... Ki/n! (16b)

n=O

Employing Eqs. (14c) and (14d), Eq. (16a) yields

S(K,Q2)=exp(-2W(K)] N exp~iK.d] J ! exp[-i~2t]exp[K.Z'(d,t).K]
d

-exp(-2W(K)] [K...K.....n(Kja).. ..... K]/n! (1 6c)

n=O

8



Equations (14a) and (16c) define (0n(Kj2)}, which are designated as the n-phonon

structure tensors and exp[-2W(K)](=exp[-K.W.K]) is the Oebye-Waller factor. (We

can also relate the (In(K,Q)) to the {(Dn(K,SQ)) by expanding exp[-2W(K)], forming

the product, and identifying the tensor coefficients.)

THE LOW ORDER STRUCTURE TENSORS

Since the structure tensors play a central role in diffraction models, it

is worthwhile to display the expressions for the first few in some detail. The

expressions are deduced by examination of expansions in Eq. (16).

The Zero Rank Structure Tensor IO(K,a) and 0-Phonon Structure Tensor cO0(KSI)

O0 (K,Q2) = I0(K,Q2) = N exp(iK.d] J ! exp(-islt] = a(K)6(Q) (17)

d

defines the zero rank structure tensor I0 (K,S2) and zero rank 0-phonon structure

tensor Oo(K,Q).

The Second Rank Structure Tensor Ip(K,17) and 1-Phonon Structure Tensor 0j1(KLa)

=lKQ N exp[iK.d] J ! exp[-i.Qt] Z(d,t)

d

=N 2 exp(iK.d] f d exp(-ilgt]

d

wq t-<2nq+l> + <nq+1>exp(iod,t) + <nq>exp(-ied,t)3
q

= a(K)6(Q)W + 01(K,s2) = I0(K,12)(-W) + (bj(K,S7) (18a)

where

= ,(,SI Wq [<nq+1>a(K+q)6(SI-SDq) + <nq>a(K-q)(Q2+Qq)] (18b)

q

9



is the 1-phonon scattering structure tensor, Eq. (14b) defines the (second rank)

Debye-Waller tensor W, and we have used

a(Kq)6-~±Qq ~ exp~iK.d] J - exp[-iS2t]exp(±ied,t) (18c)

d

The Fourth Rank Structure Tensor 12(K,2) and 2-Phonon Structure Tensor 02{C R

= N( dt

d

=N exp(iK.d] 91ept it

d

L wqliil,hI(<2nql+1> -<nq'+l>expfiO'd,t) -<nqt>exp(-iO'd,t)]

ql

EWqli~h [<2nq+l> -<nq+l>exp(iedt) -<nq>exp(-ied,t)]

q

=a(K)6(9l)[W2]i,i:,h-,h - (Wlih [,O1(K,i7)]i,h'

- [4,j(K,Q)]i,h (Wlii ,h' + I'2KP)ii;h' ,h (19a)

where

02(,O rq,q' (<nq+l><nq'+l>a(K+q+q)6(l-q-g2q')

q,q'

+<nq+1><nql>a(K+q-q' ) 6 (S~2 q+Q qr

+<nq><nq'+1>a(K-q+q' )8 ($Q+%q-qi)

is designated as the 2-phonon scattering structore tensor,

10



rq,q, = eqeqeqeq,/[( 2NM) 2 Qqaq] (19c)

and

CW2]i,i,,h,,h = Wi,hWih' (19d)

where Wi,h is the i,h component of the Debye-Waller tensor. (One might designate

(W2]i,i,,hl,h as the fourth rank Debye-Waller tensor.)

EXPERIMENTAL EVALUATION OF S(K,1), In(K,Q), W, AND Cn(K,2)

As is well known, S(K,Q) may be directly determined by neutron scattering

experiments. It is also clear that, in principle, one may deduce the tensor

In(K,Q) from analysis of the expression for S(K,9) contained in Eq. (16b).

Similarly one could deduce W and {On(K,!)) from analysis of the expression for

S(K,S2) contained in Eq. (16c) or from (In(KJ)}. Of course, in practice the

experimental determination of S(K,1) is exacting and the experimental evaluation

of In(K,V) or On(K,R) for n>1 may be impractical. Nevertheless, it is important

to note that the same tensors In(K,Q) or W and Cn(K, 2 ) appear in the BW

expression and in the PW expression and that, in principle, one can deduce the

tensors appropriate for treating the BW case from the analysis of PW scattering

experiments.

THE STANDARD EXPRESSIONS

PW Cases

The standard form: electron scattering in liquid and amorphous metals and

neutron scattering

When PWs are appropriate basis functions, Eqs. (15a) and (15b) are

appropriate and the two forms, Eqs. (16b) and (16c), define the appropriate

structure factor, i.e., the Van Hove dynamical structure factor (ref 1).

Furthermore, when a PW basis is employed vanishing unperturbed potential,

(U(x) = 0) is appropriate, and thus,

11



Wo(k,k') = Vo(k,k') --> V(K) (20a)

Also, recalling Eq. (13)

Vn(k,k') = [AA.. .A]V(k,k') --> [KK...K]V(K) = Vn(K) (20b)

so that, employing Eqs. (20) and (16b), Eq. (12) becomes

X(KR) = X(k,k',2)

- Vn(kk')*.. "In(KQ).. Vn(kk')/n! + IWo(kk') To(K,')

n=l

I V(K)Ia { [KK ...K].. (K, ).. .KK...K]/n! + Io(K,2))

n=l

= V(K)I1 S(KQ) (21)

Equation (21) is immediately recognized as the standard form for electron scat-

tering in liquid and amorphous metals and neutron scattering. That is, as they

must, the BW expressions reduce to the standard forms in the special case of

PWs.

Approximate forms

The approximate forms are based on Eq. (16c) for PWs.

Markowitz's approximation - Markowitz (ref 5) observed that the temperature

variation of the electrical resistivity of relatively high resistivity amorphous

metals could be reasonably represented by neglecting all but the elastic scat-

tering term in the expression for S(K,Q), i.e.,

S(K,Q) z exp(-2W(K)] %o(K,Q) (22)

where $O(KQ) is defined in Eq. (17). (Generalization for anisotropic materials

is obvious.) The fact that such a drastic approximation yields reasonable

agreement with experiment suggests a breakdown of conventional theory of

electrical transport in the relatively high resistivity amorphous metals

studied.

12



Sham-Ziman aoproximation - The Sham-Ziman (ref 6) approach to approximating

the multiphonon contributions to the scattering rate is the most popular.

Reference 6 presents arguments to support this procedure, but the simolicity of

the resulting forms and their relatively good performance is at the core of

their wide acceptance. One assumes that the effect of the multiphonon series is

to cancel the effect of the Debye-Waller factor in the 1-phonon term in Eq.

(16c), i.e.,

S(K,Q) = exp(-2W(K)] Dbo(KI) + K.'DI(K,Q).K (23a)

where 4o(K,Q) and PI(K,Q) are defined in Eqs. (17) and (18b). For isotropic

materials (e.g., amorphous metals), Eq. (23a) becomes

S(K,Q) z exp[-2W(K)] Do(K,Q) + @1 (K,SQ)KZ (23b)

Othier approximations - Other approximations are employed. Sometimes the

multiphonon contributions are simply ignored. Meisel and Cote (ref 7) have com-

pared an approximation proposed by Hernandez-Calderon et al. (ref 8) with the

Sham-Ziman approximation (ref 6). Little basis for selection of one over the

other could be found in fitting experimental data.

Baym's Form: The Nearly Free Electron (NFE) Case

Here we consider an important special case of PW scattering. Strictly

speaking PWs are not appropriate electron basis functions for the treatment of

crystalline materials. Nevertheless, PWs are frequently a reasonable approxima-

tion. We shall refer to such instances as NFE cases.

The NFE procedure for treating scattering of electrons due to lattice

vibrations in perfectly crystalline solids is to use PWs as approximate basis

functions of the unperturbed Hamiltonian H0 , which has a potential of the form,

U(x-l) (24)

1
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where V(x) = U(x). Thus, W(K) = 0, and Eq. (13) becomes

X(k,k',a) = Vn(k,k')*.. .In(K,,Q).. .Vn(k,k')/n! (25a)

n=1

= I V(K) 2 { ( [KK...K].. .In(K,SI).. .[KK...K]/n! (25b)

n=1

= I V(K)I 2 S (Ka) (25c)

where one uses

Vn(k,k') = Vn(K) = [K.. .K]V(K) (25d)

which holds for PWs. Note that the elastic term (n = 0) is absent from Eq.

(25). Equation (25) is frequently applied in crystalline metals (e.g.,

Reference 2); we refer to this form as Baym's approximation or the NFE approxi-

mation.

Bloch Wave Scattering in Perfect Crystals

The standard form

The procedure for treating scattering of electrons due to lattice vibra-

tions in perfectly crystalline solids (for which an 1FE model is inadequate) is

to use (approximate) BW solutions of the unperturbed Hamiltonian H0 as basis

functions, where H0 has a potential of the form,

U(x-l) (26)

where V(x) = U(x). Thus, W(K) = 0, and Eq. (13) becomes

X(k,k',fl) = Vn(k,k')*.. .In(KSI).. .Vn(k,k')/n! (27)

n=1

Note that Eqs. (26) and (27) are identical to Eqs. (24) and (25a); however,

since Eq. (25d) does not apply to BWs, the forms in Eqs. (25b) and (25c) do not
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apply to BWs. As in Baym's approximation, the elastic term (n = 0) is absent

from Eq. (27); i.e., the "natural" Bloch electrons are not elastically scattered

in perfect crystals. Equation (23) is the appropriate form to substitute for

a(K) in the expressions for In(K,S2) in the perfect crystal case.

Approximate forms: Sham-Ziman approximation

The Sham-Ziman approximation (ref 6) was originally introduced in the con-

text of perfect crystals.- The Sham-Ziman approximation for BW scattering yields

X(k,k',fl) = Vl(k,kI)*.@1(KP).Vj(k,k') (28)

Thus, substituting Eq. (23) for a(K), one finds

X~~~~~k~q kVI = 2) gV(k,'k)

X(kk',) Vc  .... q- (<nq+1>6(K+G+q)6(Q-Qq)
G,q

-<nq>6(K+G-q)6(Q+Sq)) (29a)

=[(2n)3/V c]) I g(k,k')I 2 {<nq+1>6(K+G+q)5(SI-Qq)

-<nq>6(K+G-q)6(Q+fCq)) (29b)

Equation (29) is in the form usually employed to treat electron-phonon interac-

tion controlled scattering of Bloch electrons in crystalline metals. That is,

the typical study of electron-phonon interaction cc-t'olled processes erploying

BW electrons implicitly assumes perfect crystallinity and invokes the Sha: Ziman

approximation. For example, Eq. (29) gives the "first principles" form used in

the work of Butler, Pinski, and Allen (ref 9). (One assumes that in Reference

9, 6(K-q) stands for a summation over RLV G on 5(K+G-q).) Thus, the diffraction

model origin and the nat-ire of the multiphonon scattering approximation implic-

itly adopted in standard treatments of electron-phonon interaction controlled

processes is revealed.
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ELECTRON-PHONON SPECTRAL FUNCTIONS AND STATIC STRUCTURE FACTORS

When dealing with electron-phonon interaction controlled phenomena, it is

customary to define various electron-phonon spectral functions, denoted

2 (n)F(Q). For example, the Eliashberg function (ref 10) is an electron-phonon

spectral function. The a2(Q)F(Q) may be defined by integrating appropriately

weighted diffraction model scattering rates over K. These electron-phonon

spectral functions are of theoretical importance; however, the procedures

followed in applying them often obscure the diffraction model origins of the

analyses.

On the other hand, when dealing with electron-phonon interaction controlled

phenomena, it is also possible to define static structure factors, which would

be denoted S(K), Im(K), or $m(K). The various static structure factors (or ten-

sors) may be defined by integrating appropriately weighted diffraction model

scattering rates over n. The x-ray and resistivity static structure factors for

amorphous metals, as discussed by Meisel and Cote (ref 11), are examples. The

static structure factors, which are wholly determined by the lattice dynamics,

are also of theoretical interest and emphasize the diffraction model origins of

the analysis being performed.

CONCLUDING REMARKS

A generalized diffraction model appropriate for BW electrons as well as PW

scattering from a dynamic lattice has been presented. It is shown that the

resulting model reduces to the standard diffraction model in the case of PW

scattering. These findings unify the treatment of diverse phenomena. For

example, neutron scattering in amorphous solids and electron-phonon interaction

contributions to electrical transport in perfect crystals are conveniently

treated in the context of the generalized diffraction model.
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Furthermore, it has been explicitly demonstrated that many important stand-

ard expressions appearing in the literature are obtained as approximations to

the diffraction model. Thus, the diffraction model origins of the standard

expressions are revealed and the nature of the implicit approximations in the

standard forms is clarified.
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